3.7.6 \(\int \frac {(a+b \sec (c+d x))^4}{\sec ^{\frac {9}{2}}(c+d x)} \, dx\) [606]

Optimal. Leaf size=245 \[ \frac {2 \left (7 a^4+54 a^2 b^2+15 b^4\right ) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{15 d}+\frac {8 a b \left (5 a^2+7 b^2\right ) \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{21 d}+\frac {44 a^3 b \sin (c+d x)}{63 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {14 a^2 \left (a^2+7 b^2\right ) \sin (c+d x)}{45 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {8 a b \left (5 a^2+7 b^2\right ) \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}}+\frac {2 a^2 (a+b \sec (c+d x))^2 \sin (c+d x)}{9 d \sec ^{\frac {7}{2}}(c+d x)} \]

[Out]

44/63*a^3*b*sin(d*x+c)/d/sec(d*x+c)^(5/2)+14/45*a^2*(a^2+7*b^2)*sin(d*x+c)/d/sec(d*x+c)^(3/2)+2/9*a^2*(a+b*sec
(d*x+c))^2*sin(d*x+c)/d/sec(d*x+c)^(7/2)+8/21*a*b*(5*a^2+7*b^2)*sin(d*x+c)/d/sec(d*x+c)^(1/2)+2/15*(7*a^4+54*a
^2*b^2+15*b^4)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c
)^(1/2)*sec(d*x+c)^(1/2)/d+8/21*a*b*(5*a^2+7*b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(si
n(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d

________________________________________________________________________________________

Rubi [A]
time = 0.27, antiderivative size = 245, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 8, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.348, Rules used = {3926, 4159, 4132, 3854, 3856, 2720, 4130, 2719} \begin {gather*} \frac {44 a^3 b \sin (c+d x)}{63 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {14 a^2 \left (a^2+7 b^2\right ) \sin (c+d x)}{45 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {8 a b \left (5 a^2+7 b^2\right ) \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}}+\frac {8 a b \left (5 a^2+7 b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{21 d}+\frac {2 a^2 \sin (c+d x) (a+b \sec (c+d x))^2}{9 d \sec ^{\frac {7}{2}}(c+d x)}+\frac {2 \left (7 a^4+54 a^2 b^2+15 b^4\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{15 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b*Sec[c + d*x])^4/Sec[c + d*x]^(9/2),x]

[Out]

(2*(7*a^4 + 54*a^2*b^2 + 15*b^4)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(15*d) + (8*
a*b*(5*a^2 + 7*b^2)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(21*d) + (44*a^3*b*Sin[c
+ d*x])/(63*d*Sec[c + d*x]^(5/2)) + (14*a^2*(a^2 + 7*b^2)*Sin[c + d*x])/(45*d*Sec[c + d*x]^(3/2)) + (8*a*b*(5*
a^2 + 7*b^2)*Sin[c + d*x])/(21*d*Sqrt[Sec[c + d*x]]) + (2*a^2*(a + b*Sec[c + d*x])^2*Sin[c + d*x])/(9*d*Sec[c
+ d*x]^(7/2))

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3854

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[Cos[c + d*x]*((b*Csc[c + d*x])^(n + 1)/(b*d*n)), x
] + Dist[(n + 1)/(b^2*n), Int[(b*Csc[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && Integer
Q[2*n]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3926

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[a^2*Co
t[e + f*x]*(a + b*Csc[e + f*x])^(m - 2)*((d*Csc[e + f*x])^n/(f*n)), x] - Dist[1/(d*n), Int[(a + b*Csc[e + f*x]
)^(m - 3)*(d*Csc[e + f*x])^(n + 1)*Simp[a^2*b*(m - 2*n - 2) - a*(3*b^2*n + a^2*(n + 1))*Csc[e + f*x] - b*(b^2*
n + a^2*(m + n - 1))*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && GtQ[m, 2]
 && ((IntegerQ[m] && LtQ[n, -1]) || (IntegersQ[m + 1/2, 2*n] && LeQ[n, -1]))

Rule 4130

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) + (A_)), x_Symbol] :> Simp[A*Cot[e
+ f*x]*((b*Csc[e + f*x])^m/(f*m)), x] + Dist[(C*m + A*(m + 1))/(b^2*m), Int[(b*Csc[e + f*x])^(m + 2), x], x] /
; FreeQ[{b, e, f, A, C}, x] && NeQ[C*m + A*(m + 1), 0] && LeQ[m, -1]

Rule 4132

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(
C_.)), x_Symbol] :> Dist[B/b, Int[(b*Csc[e + f*x])^(m + 1), x], x] + Int[(b*Csc[e + f*x])^m*(A + C*Csc[e + f*x
]^2), x] /; FreeQ[{b, e, f, A, B, C, m}, x]

Rule 4159

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Simp[A*a*Cot[e + f*x]*((d*Csc[e + f*x])^n/(f*n)), x]
 + Dist[1/(d*n), Int[(d*Csc[e + f*x])^(n + 1)*Simp[n*(B*a + A*b) + (n*(a*C + B*b) + A*a*(n + 1))*Csc[e + f*x]
+ b*C*n*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C}, x] && LtQ[n, -1]

Rubi steps

\begin {align*} \int \frac {(a+b \sec (c+d x))^4}{\sec ^{\frac {9}{2}}(c+d x)} \, dx &=\frac {2 a^2 (a+b \sec (c+d x))^2 \sin (c+d x)}{9 d \sec ^{\frac {7}{2}}(c+d x)}+\frac {2}{9} \int \frac {(a+b \sec (c+d x)) \left (11 a^2 b+\frac {1}{2} a \left (7 a^2+27 b^2\right ) \sec (c+d x)+\frac {3}{2} b \left (a^2+3 b^2\right ) \sec ^2(c+d x)\right )}{\sec ^{\frac {7}{2}}(c+d x)} \, dx\\ &=\frac {44 a^3 b \sin (c+d x)}{63 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {2 a^2 (a+b \sec (c+d x))^2 \sin (c+d x)}{9 d \sec ^{\frac {7}{2}}(c+d x)}-\frac {4}{63} \int \frac {-\frac {49}{4} a^2 \left (a^2+7 b^2\right )-9 a b \left (5 a^2+7 b^2\right ) \sec (c+d x)-\frac {21}{4} b^2 \left (a^2+3 b^2\right ) \sec ^2(c+d x)}{\sec ^{\frac {5}{2}}(c+d x)} \, dx\\ &=\frac {44 a^3 b \sin (c+d x)}{63 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {2 a^2 (a+b \sec (c+d x))^2 \sin (c+d x)}{9 d \sec ^{\frac {7}{2}}(c+d x)}-\frac {4}{63} \int \frac {-\frac {49}{4} a^2 \left (a^2+7 b^2\right )-\frac {21}{4} b^2 \left (a^2+3 b^2\right ) \sec ^2(c+d x)}{\sec ^{\frac {5}{2}}(c+d x)} \, dx+\frac {1}{7} \left (4 a b \left (5 a^2+7 b^2\right )\right ) \int \frac {1}{\sec ^{\frac {3}{2}}(c+d x)} \, dx\\ &=\frac {44 a^3 b \sin (c+d x)}{63 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {14 a^2 \left (a^2+7 b^2\right ) \sin (c+d x)}{45 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {8 a b \left (5 a^2+7 b^2\right ) \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}}+\frac {2 a^2 (a+b \sec (c+d x))^2 \sin (c+d x)}{9 d \sec ^{\frac {7}{2}}(c+d x)}+\frac {1}{21} \left (4 a b \left (5 a^2+7 b^2\right )\right ) \int \sqrt {\sec (c+d x)} \, dx-\frac {1}{15} \left (-7 a^4-54 a^2 b^2-15 b^4\right ) \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx\\ &=\frac {44 a^3 b \sin (c+d x)}{63 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {14 a^2 \left (a^2+7 b^2\right ) \sin (c+d x)}{45 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {8 a b \left (5 a^2+7 b^2\right ) \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}}+\frac {2 a^2 (a+b \sec (c+d x))^2 \sin (c+d x)}{9 d \sec ^{\frac {7}{2}}(c+d x)}+\frac {1}{21} \left (4 a b \left (5 a^2+7 b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx-\frac {1}{15} \left (\left (-7 a^4-54 a^2 b^2-15 b^4\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx\\ &=\frac {2 \left (7 a^4+54 a^2 b^2+15 b^4\right ) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{15 d}+\frac {8 a b \left (5 a^2+7 b^2\right ) \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{21 d}+\frac {44 a^3 b \sin (c+d x)}{63 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {14 a^2 \left (a^2+7 b^2\right ) \sin (c+d x)}{45 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {8 a b \left (5 a^2+7 b^2\right ) \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}}+\frac {2 a^2 (a+b \sec (c+d x))^2 \sin (c+d x)}{9 d \sec ^{\frac {7}{2}}(c+d x)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.99, size = 168, normalized size = 0.69 \begin {gather*} \frac {\sqrt {\sec (c+d x)} \left (168 \left (7 a^4+54 a^2 b^2+15 b^4\right ) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+480 a b \left (5 a^2+7 b^2\right ) \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )+a \left (7 a \left (43 a^2+216 b^2\right ) \cos (c+d x)+5 \left (312 a^2 b+336 b^3+72 a^2 b \cos (2 (c+d x))+7 a^3 \cos (3 (c+d x))\right )\right ) \sin (2 (c+d x))\right )}{1260 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Sec[c + d*x])^4/Sec[c + d*x]^(9/2),x]

[Out]

(Sqrt[Sec[c + d*x]]*(168*(7*a^4 + 54*a^2*b^2 + 15*b^4)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2] + 480*a*b*
(5*a^2 + 7*b^2)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2] + a*(7*a*(43*a^2 + 216*b^2)*Cos[c + d*x] + 5*(312
*a^2*b + 336*b^3 + 72*a^2*b*Cos[2*(c + d*x)] + 7*a^3*Cos[3*(c + d*x)]))*Sin[2*(c + d*x)]))/(1260*d)

________________________________________________________________________________________

Maple [A]
time = 0.14, size = 529, normalized size = 2.16

method result size
default \(-\frac {2 \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (-1120 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{10}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a^{4}+\left (2240 a^{4}+2880 b \,a^{3}\right ) \left (\sin ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (-2072 a^{4}-4320 b \,a^{3}-3024 b^{2} a^{2}\right ) \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (952 a^{4}+3360 b \,a^{3}+3024 b^{2} a^{2}+1680 b^{3} a \right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (-168 a^{4}-960 b \,a^{3}-756 b^{2} a^{2}-840 b^{3} a \right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+300 b \,a^{3} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+420 b^{3} a \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-147 a^{4} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-1134 b^{2} a^{2} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-315 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) b^{4}\right )}{315 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(529\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*sec(d*x+c))^4/sec(d*x+c)^(9/2),x,method=_RETURNVERBOSE)

[Out]

-2/315*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-1120*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^10
*a^4+(2240*a^4+2880*a^3*b)*sin(1/2*d*x+1/2*c)^8*cos(1/2*d*x+1/2*c)+(-2072*a^4-4320*a^3*b-3024*a^2*b^2)*sin(1/2
*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)+(952*a^4+3360*a^3*b+3024*a^2*b^2+1680*a*b^3)*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x
+1/2*c)+(-168*a^4-960*a^3*b-756*a^2*b^2-840*a*b^3)*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+300*b*a^3*(sin(1/2*
d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+420*b^3*a*(sin(1/2*
d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-147*a^4*(sin(1/2*d*
x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-1134*b^2*a^2*(sin(1/2
*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-315*(sin(1/2*d*x+1
/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*b^4)/(-2*sin(1/2*d*x+1/2
*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))^4/sec(d*x+c)^(9/2),x, algorithm="maxima")

[Out]

integrate((b*sec(d*x + c) + a)^4/sec(d*x + c)^(9/2), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.83, size = 257, normalized size = 1.05 \begin {gather*} -\frac {60 \, \sqrt {2} {\left (5 i \, a^{3} b + 7 i \, a b^{3}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 60 \, \sqrt {2} {\left (-5 i \, a^{3} b - 7 i \, a b^{3}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 21 \, \sqrt {2} {\left (-7 i \, a^{4} - 54 i \, a^{2} b^{2} - 15 i \, b^{4}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 21 \, \sqrt {2} {\left (7 i \, a^{4} + 54 i \, a^{2} b^{2} + 15 i \, b^{4}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - \frac {2 \, {\left (35 \, a^{4} \cos \left (d x + c\right )^{4} + 180 \, a^{3} b \cos \left (d x + c\right )^{3} + 7 \, {\left (7 \, a^{4} + 54 \, a^{2} b^{2}\right )} \cos \left (d x + c\right )^{2} + 60 \, {\left (5 \, a^{3} b + 7 \, a b^{3}\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{315 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))^4/sec(d*x+c)^(9/2),x, algorithm="fricas")

[Out]

-1/315*(60*sqrt(2)*(5*I*a^3*b + 7*I*a*b^3)*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + 60*sqrt
(2)*(-5*I*a^3*b - 7*I*a*b^3)*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + 21*sqrt(2)*(-7*I*a^4
- 54*I*a^2*b^2 - 15*I*b^4)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) +
 21*sqrt(2)*(7*I*a^4 + 54*I*a^2*b^2 + 15*I*b^4)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c)
 - I*sin(d*x + c))) - 2*(35*a^4*cos(d*x + c)^4 + 180*a^3*b*cos(d*x + c)^3 + 7*(7*a^4 + 54*a^2*b^2)*cos(d*x + c
)^2 + 60*(5*a^3*b + 7*a*b^3)*cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/d

________________________________________________________________________________________

Sympy [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: SystemError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))**4/sec(d*x+c)**(9/2),x)

[Out]

Exception raised: SystemError >> excessive stack use: stack is 3879 deep

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))^4/sec(d*x+c)^(9/2),x, algorithm="giac")

[Out]

integrate((b*sec(d*x + c) + a)^4/sec(d*x + c)^(9/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^4}{{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{9/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b/cos(c + d*x))^4/(1/cos(c + d*x))^(9/2),x)

[Out]

int((a + b/cos(c + d*x))^4/(1/cos(c + d*x))^(9/2), x)

________________________________________________________________________________________